about云开发

 找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 1214|回复: 2

浅谈互联网时代下的大数据分析及挖掘技术

[复制链接]

30

主题

4

听众

0

收听

中级会员

Rank: 3Rank: 3

积分
331
发表于 2018-1-11 11:40:41 | 显示全部楼层 |阅读模式

大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。

统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。

神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

从挖掘任务和挖掘方法的角度,着重突破:1、可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。

2、数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。

3、预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。

4、语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。

5、数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。


来源:网络    更多更多大数据资讯尽在网舟科技大数据。     

6

主题

6

听众

0

收听

高级会员

Rank: 4

积分
2522

最佳新人热心会员

发表于 2018-1-15 08:42:19 | 显示全部楼层
总结的很不错,但需学习的更多
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

QQ|小黑屋|about云开发-学问论坛|社区 ( 京ICP备12023829号

GMT+8, 2018-9-21 02:34 , Processed in 0.393341 second(s), 30 queries , Gzip On.

Powered by Discuz! X3.2 Licensed

快速回复 返回顶部 返回列表