分享

BAT机器学习面试题

yuwenge 发表于 2018-1-22 19:10:01 [显示全部楼层] 只看大图 回帖奖励 阅读模式 关闭右栏 0 17384
本帖最后由 yuwenge 于 2018-1-22 19:16 编辑
问题导读

1.什么是SVM?
2.如何描述tensorflow的计算图?
3.CNN的卷积核是单层的还是多层的?
4.overfitting怎么解决?




1.请简要介绍下SVM机器学习 ML模型 易SVM,全称是support vector machine,中文名叫支持向量机。SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不同的数据分隔开。
扩展:这里有篇文章详尽介绍了SVM的原理、推导,《支持向量机通俗导论(理解SVM的三层境界)》。此外,这里有个视频也是关于SVM的推导:《纯白板手推SVM》

2.请简要介绍下tensorflow的计算图,深度学习 DL框架 中 Tensorflow是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图,可以把计算图看做是一种有向图,Tensorflow中的每一个节点都是计算图上的一个Tensor, 也就是张量,而节点之间的边描述了计算之间的依赖关系(定义时)和数学操作(运算时)。如下两图表示:
[mw_shl_code=text,true]a=x*y; b=a+z; c=tf.reduce_sum(b);
[/mw_shl_code]
1.gif 1.png

3.在k-means或kNN,我们常用欧氏距离来计算最近的邻居之间的距离,有时也用曼哈顿距离,请对比下这两种距离的差别。机器学习 ML模型 中。欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为:
1353398777_7638.png
欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量量纲)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,欧氏距离适用于向量各分量的度量标准统一的情况。
  • 曼哈顿距离,我们可以定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为: 5.png ,要注意的是,曼哈顿距离依赖座标系统的转度,而非系统在座标轴上的平移或映射。当坐标轴变动时,点间的距离就会不同。
     通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。而实际驾驶距离就是这个“曼哈顿距离”,这也是曼哈顿距离名称的来源, 同时,曼哈顿距离也称为城市街区距离(City Block distance)。





    曼哈顿距离和欧式距离一般用途不同,无相互替代性。另,关于各种距离的比较参看《从K近邻算法、距离度量谈到KD树、SIFT+BBF算法》。

4.CNN的卷积核是单层的还是多层的?
深度学习 DL模型 中@AntZ:卷积运算的定义和理解可以看下这篇文章《CNN笔记:通俗理解卷积神经网络》,链接:http://blog.csdn.net/v_july_v/article/details/51812459,在CNN中,卷积计算属于离散卷积, 本来需要卷积核的权重矩阵旋转180度, 但我们并不需要旋转前的权重矩阵形式, 故直接用旋转后权重矩阵作为卷积核表达, 这样的好处就离散卷积运算变成了矩阵点积运算。
一般而言,深度卷积网络是一层又一层的。层的本质是特征图, 存贮输入数据或其中间表示值。一组卷积核则是联系前后两层的网络参数表达体, 训练的目标就是每个卷积核的权重参数组。
描述网络模型中某层的厚度,通常用名词通道channel数或者特征图feature map数。不过人们更习惯把作为数据输入的前层的厚度称之为通道数(比如RGB三色图层称为输入通道数为3),把作为卷积输出的后层的厚度称之为特征图数。
卷积核(filter)一般是3D多层的,除了面积参数, 比如3x3之外, 还有厚度参数H(2D的视为厚度1). 还有一个属性是卷积核的个数N。
卷积核的厚度H, 一般等于前层厚度M(输入通道数或feature map数). 特殊情况M > H。
卷积核的个数N, 一般等于后层厚度(后层feature maps数,因为相等所以也用N表示)。
卷积核通常从属于后层,为后层提供了各种查看前层特征的视角,这个视角是自动形成的。
卷积核厚度等于1时为2D卷积,也就是平面对应点分别相乘然后把结果加起来,相当于点积运算. 各种2D卷积动图可以看这里https://github.com/vdumoulin/conv_arithmetic

卷积核厚度大于1时为3D卷积(depth-wise),每片平面分别求2D卷积,然后把每片卷积结果加起来,作为3D卷积结果;1x1卷积属于3D卷积的一个特例(point-wise),有厚度无面积, 直接把每层单个点相乘再相加。
归纳之,卷积的意思就是把一个区域,不管是一维线段,二维方阵,还是三维长方块,全部按照卷积核的维度形状,从输入挖出同样维度形状, 对应逐点相乘后求和,浓缩成一个标量值也就是降到零维度,作为输出到一个特征图的一个点的值. 这个很像渔夫收网。
可以比喻一群渔夫坐一个渔船撒网打鱼,鱼塘是多层水域,每层鱼儿不同。
船每次移位一个stride到一个地方,每个渔夫撒一网,得到收获,然后换一个距离stride再撒,如此重复直到遍历鱼塘。
A渔夫盯着鱼的品种,遍历鱼塘后该渔夫描绘了鱼塘的鱼品种分布;
B渔夫盯着鱼的重量,遍历鱼塘后该渔夫描绘了鱼塘的鱼重量分布;
还有N-2个渔夫,各自兴趣各干各的;
最后得到N个特征图,描述了鱼塘的一切!
2D卷积表示渔夫的网就是带一圈浮标的渔网,只打上面一层水体的鱼;
3D卷积表示渔夫的网是多层嵌套的渔网,上中下层水体的鱼儿都跑不掉;
1x1卷积可以视为每次移位stride,甩钩钓鱼代替了撒网;
下面解释一下特殊情况的 M > H:
实际上,除了输入数据的通道数比较少之外,中间层的feature map数很多,这样中间层算卷积会累死计算机(鱼塘太深,每层鱼都打,需要的鱼网太重了)。所以很多深度卷积网络把全部通道/特征图划分一下,每个卷积核只看其中一部分(渔夫A的渔网只打捞深水段,渔夫B的渔网只打捞浅水段)。这样整个深度网络架构是横向开始分道扬镳了,到最后才又融合。这样看来,很多网络模型的架构不完全是突发奇想,而是是被参数计算量逼得。特别是现在需要在移动设备上进行AI应用计算(也叫推断), 模型参数规模必须更小, 所以出现很多减少握手规模的卷积形式, 现在主流网络架构大都如此。比如AlexNet:
5.png
另,附百度2015校招机器学习笔试题:http://www.itmian4.com/thread-7042-1-1.html

5.关于LR。
机器学习 ML模型 难把LR从头到脚都给讲一遍。建模,现场数学推导,每种解法的原理,正则化,LR和maxent模型啥关系,lr为啥比线性回归好。有不少会背答案的人,问逻辑细节就糊涂了。原理都会? 那就问工程,并行化怎么做,有几种并行化方式,读过哪些开源的实现。还会,那就准备收了吧,顺便逼问LR模型发展历史。











    6.png
    另外,这两篇文章可以做下参考:Logistic Regression 的前世今生(理论篇)、机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)。


6.overfitting怎么解决?
机器学习 ML基础 中dropout、regularization、batch normalizatin@AntZ: overfitting就是过拟合, 其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集, 对训练集外的数据却不work, 这称之为泛化(generalization)性能不好。泛化性能是训练的效果评价中的首要目标,没有良好的泛化,就等于南辕北辙, 一切都是无用功。
file:///C:/Users/july/AppData/Roaming/Tencent/QQ/Temp/TempPic/R7](DWVA7V%60K8MQJ97@FD~W.tmp
7.png
过拟合是泛化的反面,好比乡下快活的刘姥姥进了大观园会各种不适应,但受过良好教育的林黛玉进贾府就不会大惊小怪。实际训练中, 降低过拟合的办法一般如下:
正则化(Regularization)
L2正则化:目标函数中增加所有权重w参数的平方之和, 逼迫所有w尽可能趋向零但不为零. 因为过拟合的时候, 拟合函数需要顾忌每一个点, 最终形成的拟合函数波动很大, 在某些很小的区间里, 函数值的变化很剧烈, 也就是某些w非常大. 为此, L2正则化的加入就惩罚了权重变大的趋势.
L1正则化:目标函数中增加所有权重w参数的绝对值之和, 逼迫更多w为零(也就是变稀疏. L2因为其导数也趋0, 奔向零的速度不如L1给力了). 大家对稀疏规则化趋之若鹜的一个关键原因在于它能实现特征的自动选择。一般来说,xi的大部分元素(也就是特征)都是和最终的输出yi没有关系或者不提供任何信息的,在最小化目标函数的时候考虑xi这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的特征权重反而会被考虑,从而干扰了对正确yi的预测。稀疏规则化算子的引入就是为了完成特征自动选择的光荣使命,它会学习地去掉这些无用的特征,也就是把这些特征对应的权重置为0。
随机失活(dropout)
在训练的运行的时候,让神经元以超参数p的概率被激活(也就是1-p的概率被设置为0), 每个w因此随机参与, 使得任意w都不是不可或缺的, 效果类似于数量巨大的模型集成。
逐层归一化(batch normalization)
这个方法给每层的输出都做一次归一化(网络上相当于加了一个线性变换层), 使得下一层的输入接近高斯分布. 这个方法相当于下一层的w训练时避免了其输入以偏概全, 因而泛化效果非常好.
提前终止(early stopping)
理论上可能的局部极小值数量随参数的数量呈指数增长, 到达某个精确的最小值是不良泛化的一个来源. 实践表明, 追求细粒度极小值具有较高的泛化误差。这是直观的,因为我们通常会希望我们的误差函数是平滑的, 精确的最小值处所见相应误差曲面具有高度不规则性, 而我们的泛化要求减少精确度去获得平滑最小值, 所以很多训练方法都提出了提前终止策略. 典型的方法是根据交叉叉验证提前终止: 若每次训练前, 将训练数据划分为若干份, 取一份为测试集, 其他为训练集, 每次训练完立即拿此次选中的测试集自测. 因为每份都有一次机会当测试集, 所以此方法称之为交叉验证. 交叉验证的错误率最小时可以认为泛化性能最好, 这时候训练错误率虽然还在继续下降, 但也得终止继续训练了.  


7.LR和SVM的联系与区别。
机器学习 ML模型 中@朝阳在望,联系:
1、LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题)
2、两个方法都可以增加不同的正则化项,如l1、l2等等。所以在很多实验中,两种算法的结果是很接近的。
区别:
1、LR是参数模型,SVM是非参数模型。
2、从目标函数来看,区别在于逻辑回归采用的是logistical loss,SVM采用的是hinge loss,这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。
3、SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。
4、逻辑回归相对来说模型更简单,好理解,特别是大规模线性分类时比较方便。而SVM的理解和优化相对来说复杂一些,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。
5、logic 能做的 svm能做,但可能在准确率上有问题,svm能做的logic有的做不了。
来源:http://blog.csdn.net/timcompp/article/details/62237986


8.说说你知道的核函数。机器学习 ML基础
通常人们会从一些常用的核函数中选择(根据问题和数据的不同,选择不同的参数,实际上就是得到了不同的核函数),例如:

  • 多项式核 1.png ,显然刚才我们举的例子是这里多项式核的一个特例(R = 1,d = 2)。虽然比较麻烦,而且没有必要,不过这个核所对应的映射实际上是可以写出来的,该空间的维度是 2.jpg ,其中 是原始空间的维度。
高斯核 3.jpg ,这个核就是最开始提到过的会将原始空间映射为无穷维空间的那个家伙。不过,如果选得很大的话,高次特征上的权重实际上衰减得非常快,所以实际上(数值上近似一下)相当于一个低维的子空间;反过来,如果选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。不过,总的来说,通过调控参数,高斯核实际上具有相当高的灵活性,也是使用最广泛的核函数之一。下图所示的例子便是把低维线性不可分的数据通过高斯核函数映射到了高维空间:
4.png
线性核 5.png ,这实际上就是原始空间中的内积。这个核存在的主要目的是使得“映射后空间中的问题”和“映射前空间中的问题”两者在形式上统一起来了(意思是说,咱们有的时候,写代码,或写公式的时候,只要写个模板或通用表达式,然后再代入不同的核,便可以了,于此,便在形式上统一了起来,不用再分别写一个线性的,和一个非线性的)。

9.LR与线性回归的区别与联系。
机器学习         ML模型 中等@AntZ: LR工业上一般指Logistic Regression(逻辑回归)而不是Linear Regression(线性回归). LR在线性回归的实数范围输出值上施加sigmoid函数将值收敛到0~1范围, 其目标函数也因此从差平方和函数变为对数损失函数, 以提供最优化所需导数(sigmoid函数是softmax函数的二元特例, 其导数均为函数值的f*(1-f)形式)。请注意, LR往往是解决二元0/1分类问题的, 只是它和线性回归耦合太紧, 不自觉也冠了个回归的名字(马甲无处不在). 若要求多元分类,就要把sigmoid换成大名鼎鼎的softmax了。
@nishizhen:个人感觉逻辑回归和线性回归首先都是广义的线性回归,
其次经典线性模型的优化目标函数是最小二乘,而逻辑回归则是似然函数,
另外线性回归在整个实数域范围内进行预测,敏感度一致,而分类范围,需要在[0,1]。逻辑回归就是一种减小预测范围,将预测值限定为[0,1]间的一种回归模型,因而对于这类问题来说,逻辑回归的鲁棒性比线性回归的要好。
@乖乖癞皮狗:逻辑回归的模型本质上是一个线性回归模型,逻辑回归都是以线性回归为理论支持的。但线性回归模型无法做到sigmoid的非线性形式,sigmoid可以轻松处理0/1分类问题。

10.请问(决策树、Random Forest、Booting、Adaboot)GBDT和XGBoost的区别是什么?
机器学习 ML模型 难
@AntZ
集成学习的集成对象是学习器. Bagging和Boosting属于集成学习的两类方法. Bagging方法有放回地采样同数量样本训练每个学习器, 然后再一起集成(简单投票); Boosting方法使用全部样本(可调权重)依次训练每个学习器, 迭代集成(平滑加权).
决策树属于最常用的学习器, 其学习过程是从根建立树, 也就是如何决策叶子节点分裂. ID3/C4.5决策树用信息熵计算最优分裂, CART决策树用基尼指数计算最优分裂, xgboost决策树使用二阶泰勒展开系数计算最优分裂.
下面所提到的学习器都是决策树:
Bagging方法:
    学习器间不存在强依赖关系, 学习器可并行训练生成, 集成方式一般为投票;
    Random Forest属于Bagging的代表, 放回抽样, 每个学习器随机选择部分特征去优化;
Boosting方法:
   学习器之间存在强依赖关系、必须串行生成, 集成方式为加权和;
    Adaboost属于Boosting, 采用指数损失函数替代原本分类任务的0/1损失函数;
    GBDT属于Boosting的优秀代表, 对函数残差近似值进行梯度下降, 用CART回归树做学习器, 集成为回归模型;
    xgboost属于Boosting的集大成者, 对函数残差近似值进行梯度下降, 迭代时利用了二阶梯度信息, 集成模型可分类也可回归. 由于它可在特征粒度上并行计算, 结构风险和工程实现都做了很多优化, 泛化, 性能和扩展性都比GBDT要好。
关于决策树,这里有篇《决策树算法》。而随机森林Random Forest是一个包含多个决策树的分类器。至于AdaBoost,则是英文"Adaptive Boosting"(自适应增强)的缩写,关于AdaBoost可以看下这篇文章《Adaboost 算法的原理与推导》。GBDT(Gradient Boosting Decision Tree),即梯度上升决策树算法,相当于融合决策树和梯度上升boosting算法。
@Xijun LI:xgboost类似于gbdt的优化版,不论是精度还是效率上都有了提升。与gbdt相比,具体的优点有:
1.损失函数是用泰勒展式二项逼近,而不是像gbdt里的就是一阶导数
2.对树的结构进行了正则化约束,防止模型过度复杂,降低了过拟合的可能性
3.节点分裂的方式不同,gbdt是用的gini系数,xgboost是经过优化推导后的
更多详见:https://xijunlee.github.io/2017/06/03/%E9%9B%86%E6%88%90%E5%AD%A6%E4%B9%A0%E6%80%BB%E7%BB%93/

11.为什么xgboost要用泰勒展开,优势在哪里?
@AntZ:xgboost使用了一阶和二阶偏导, 二阶导数有利于梯度下降的更快更准. 使用泰勒展开取得函数做自变量的二阶导数形式, 可以在不选定损失函数具体形式的情况下, 仅仅依靠输入数据的值就可以进行叶子分裂优化计算, 本质上也就把损失函数的选取和模型算法优化/参数选择分开了. 这种去耦合增加了xgboost的适用性, 使得它按需选取损失函数, 可以用于分类, 也可以用于回归。

12.xgboost如何寻找最优特征?是又放回还是无放回的呢?
@AntZ:xgboost在训练的过程中给出各个特征的增益评分,最大增益的特征会被选出来作为分裂依据, 从而记忆了每个特征对在模型训练时的重要性 -- 从根到叶子中间节点涉及某特征的次数作为该特征重要性排序.
xgboost属于boosting集成学习方法, 样本是不放回的, 因而每轮计算样本不重复. 另一方面, xgboost支持子采样, 也就是每轮计算可以不使用全部样本, 以减少过拟合. 进一步地, xgboost 还有列采样, 每轮计算按百分比随机采样一部分特征, 既提高计算速度又减少过拟合。

13.谈谈判别式模型和生成式模型?机器学习 ML基础 易
判别方法:由数据直接学习决策函数 Y = f(X),或者由条件分布概率 P(Y|X)作为预测模型,即判别模型。
生成方法:由数据学习联合概率密度分布函数 P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型。
由生成模型可以得到判别模型,但由判别模型得不到生成模型。
常见的判别模型有:K近邻、SVM、决策树、感知机、线性判别分析(LDA)、线性回归、传统的神经网络、逻辑斯蒂回归、boosting、条件随机场
常见的生成模型有:朴素贝叶斯、隐马尔可夫模型、高斯混合模型、文档主题生成模型(LDA)、限制玻尔兹曼机

14.L1和L2的区别。机器学习 ML基础 易
L1范数(L1 norm)是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)。
比如 向量A=[1,-1,3], 那么A的L1范数为 |1|+|-1|+|3|.
简单总结一下就是:
L1范数: 为x向量各个元素绝对值之和。
L2范数: 为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范数
Lp范数: 为x向量各个元素绝对值p次方和的1/p次方.
在支持向量机学习过程中,L1范数实际是一种对于成本函数求解最优的过程,因此,L1范数正则化通过向成本函数中添加L1范数,使得学习得到的结果满足稀疏化,从而方便人类提取特征。
L1范数可以使权值稀疏,方便特征提取。
L2范数可以防止过拟合,提升模型的泛化能力。
@AntZ: L1和L2的差别,为什么一个让绝对值最小,一个让平方最小,会有那么大的差别呢?看导数一个是1一个是w便知, 在靠进零附近, L1以匀速下降到零, 而L2则完全停下来了. 这说明L1是将不重要的特征(或者说, 重要性不在一个数量级上)尽快剔除, L2则是把特征贡献尽量压缩最小但不至于为零. 两者一起作用, 就是把重要性在一个数量级(重要性最高的)的那些特征一起平等共事(简言之, 不养闲人也不要超人)。

原文链接:
http://blog.csdn.net/v_JULY_v/article/details/78121924





本帖被以下淘专辑推荐:

没找到任何评论,期待你打破沉寂

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条