分享

深度学习(7)-递归神经网络详解【零基础入门】

本帖最后由 hero1122 于 2017-3-20 15:59 编辑
问题导读:

1.什么是递归神经网络?
2.递归神经网络的算法细节是什么?
3.怎样训练递归神经网络?
4.怎样实现递归神经网络?
5.递归神经网络有哪些应用场景?


往期回顾
在前面的文章中,我们介绍了循环神经网络,它可以用来处理包含序列结构的信息。然而,除此之外,信息往往还存在着诸如树结构、图结构等更复杂的结构。对于这种复杂的结构,循环神经网络就无能为力了。本文介绍一种更为强大、复杂的神经网络:递归神经网络 (Recursive Neural Network, RNN),以及它的训练算法BPTS (Back Propagation Through Structure)。顾名思义,递归神经网络(巧合的是,它的缩写和循环神经网络一样,也是RNN)可以处理诸如树、图这样的递归结构。在文章的最后,我们将实现一个递归神经网络,并介绍它的几个应用场景。

递归神经网络是啥
因为神经网络的输入层单元个数是固定的,因此必须用循环或者递归的方式来处理长度可变的输入。循环神经网络实现了前者,通过将长度不定的输入分割为等长度的小块,然后再依次的输入到网络中,从而实现了神经网络对变长输入的处理。一个典型的例子是,当我们处理一句话的时候,我们可以把一句话看作是词组成的序列,然后,每次向循环神经网络输入一个词,如此循环直至整句话输入完毕,循环神经网络将产生对应的输出。如此,我们就能处理任意长度的句子了。入下图所示:
1.png
然而,有时候把句子看做是词的序列是不够的,比如下面这句话『两个外语学院的学生』:
2.png
上图显示了这句话的两个不同的语法解析树。可以看出来这句话有歧义,不同的语法解析树则对应了不同的意思。一个是『两个外语学院的/学生』,也就是学生可能有许多,但他们来自于两所外语学校;另一个是『两个/外语学院的学生』,也就是只有两个学生,他们是外语学院的。为了能够让模型区分出两个不同的意思,我们的模型必须能够按照树结构去处理信息,而不是序列,这就是递归神经网络的作用。当面对按照树/图结构处理信息更有效的任务时,递归神经网络通常都会获得不错的结果。

递归神经网络可以把一个树/图结构信息编码为一个向量,也就是把信息映射到一个语义向量空间中。这个语义向量空间满足某类性质,比如语义相似的向量距离更近。也就是说,如果两句话(尽管内容不同)它的意思是相似的,那么把它们分别编码后的两个向量的距离也相近;反之,如果两句话的意思截然不同,那么编码后向量的距离则很远。如下图所示:
3.png
从上图我们可以看到,递归神经网络将所有的词、句都映射到一个2维向量空间中。句子『the country of my birth』和句子『the place where I was born』的意思是非常接近的,所以表示它们的两个向量在向量空间中的距离很近。另外两个词『Germany』和『France』因为表示的都是地点,它们的向量与上面两句话的向量的距离,就比另外两个表示时间的词『Monday』和『Tuesday』的向量的距离近得多。这样,通过向量的距离,就得到了一种语义的表示。

上图还显示了自然语言可组合的性质:词可以组成句、句可以组成段落、段落可以组成篇章,而更高层的语义取决于底层的语义以及它们的组合方式。递归神经网络是一种表示学习,它可以将词、句、段、篇按照他们的语义映射到同一个向量空间中,也就是把可组合(树/图结构)的信息表示为一个个有意义的向量。比如上面这个例子,递归神经网络把句子"the country of my birth"表示为二维向量[1,5]。有了这个『编码器』之后,我们就可以以这些有意义的向量为基础去完成更高级的任务(比如情感分析等)。如下图所示,递归神经网络在做情感分析时,可以比较好的处理否定句,这是胜过其他一些模型的:
4.png
在上图中,蓝色表示正面评价,红色表示负面评价。每个节点是一个向量,这个向量表达了以它为根的子树的情感评价。比如"intelligent humor"是正面评价,而"care about cleverness wit or any other kind of intelligent humor"是中性评价。我们可以看到,模型能够正确的处理doesn't的含义,将正面评价转变为负面评价。

尽管递归神经网络具有更为强大的表示能力,但是在实际应用中并不太流行。其中一个主要原因是,递归神经网络的输入是树/图结构,而这种结构需要花费很多人工去标注。想象一下,如果我们用循环神经网络处理句子,那么我们可以直接把句子作为输入。然而,如果我们用递归神经网络处理句子,我们就必须把每个句子标注为语法解析树的形式,这无疑要花费非常大的精力。很多时候,相对于递归神经网络能够带来的性能提升,这个投入是不太划算的。

我们已经基本了解了递归神经网络是做什么用的,接下来,我们将探讨它的算法细节。

递归神经网络的前向计算
接下来,我们详细介绍一下递归神经网络是如何处理树/图结构的信息的。在这里,我们以处理树型信息为例进行介绍。
递归神经网络的输入是两个子节点(也可以是多个),输出就是将这两个子节点编码后产生的父节点,父节点的维度和每个子节点是相同的。如下图所示:
5.png
m1.png

6.png
举个例子,我们使用递归神将网络将『两个外语学校的学生』映射为一个向量,如下图所示:
7.png
m2.png

递归神经网络的训练
m3.png
下面,我们介绍适用于递归神经网络的训练算法,也就是BPTS算法。

误差项的传递
首先,我们先推导将误差从父节点传递到子节点的公式,如下图:
8.png
m4.png
m5.png
m6.png

9.png
m7.png
m8.png

有了传递一层的公式,我们就不难写出逐层传递的公式。
10.png
m9.png

权重梯度的计算

m10.png
m11.png
m12.png
因为循环神经网络的证明过程已经在深度学习(4)-卷积神经网络【零基础入门】一文中给出,因此,递归神经网络『为什么最终梯度是各层梯度之和』的证明就留给读者自行完成啦。

m13.png
m14.png
m15.png

这就是递归神经网络的训练算法BPTS。由于我们有了前面几篇文章的基础,相信读者们理解BPTS算法也会比较容易。

递归神经网络的实现
现在,我们实现一个处理树型结构的递归神经网络。
在文件的开头,加入如下代码:
[mw_shl_code=python,true]#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import numpy as np
from cnn import IdentityActivator[/mw_shl_code]
上述四行代码非常简单,没有什么需要解释的。IdentityActivator激活函数是在我们介绍卷积神经网络时写的,现在引用一下它。
我们首先定义一个树节点结构,这样,我们就可以用它保存卷积神经网络生成的整棵树:
[mw_shl_code=python,true]class TreeNode(object):
    def __init__(self, data, children=[], children_data=[]):
        self.parent = None
        self.children = children
        self.children_data = children_data
        self.data = data
        for child in children:
            child.parent = self[/mw_shl_code]
接下来,我们把递归神经网络的实现代码都放在RecursiveLayer类中,下面是这个类的构造函数:
[mw_shl_code=python,true]# 递归神经网络实现
class RecursiveLayer(object):
    def __init__(self, node_width, child_count,
                 activator, learning_rate):
        '''
        递归神经网络构造函数
        node_width: 表示每个节点的向量的维度
        child_count: 每个父节点有几个子节点
        activator: 激活函数对象
        learning_rate: 梯度下降算法学习率
        '''
        self.node_width = node_width
        self.child_count = child_count
        self.activator = activator
        self.learning_rate = learning_rate
        # 权重数组W
        self.W = np.random.uniform(-1e-4, 1e-4,
            (node_width, node_width * child_count))
        # 偏置项b
        self.b = np.zeros((node_width, 1))
        # 递归神经网络生成的树的根节点
        self.root = None[/mw_shl_code]
下面是前向计算的实现:
[mw_shl_code=python,true]def forward(self, *children):
        '''
        前向计算
        '''
        children_data = self.concatenate(children)
        parent_data = self.activator.forward(
            np.dot(self.W, children_data) + self.b
        )
        self.root = TreeNode(parent_data, children
                            , children_data)[/mw_shl_code]
forward函数接收一系列的树节点对象作为输入,然后,递归神经网络将这些树节点作为子节点,并计算它们的父节点。最后,将计算的父节点保存在self.root变量中。
上面用到的concatenate函数,是将各个子节点中的数据拼接成一个长向量,其代码如下:
[mw_shl_code=python,true]def concatenate(self, tree_nodes):
        '''
        将各个树节点中的数据拼接成一个长向量
        '''
        concat = np.zeros((0,1))
        for node in tree_nodes:
            concat = np.concatenate((concat, node.data))
        return concat[/mw_shl_code]
下面是反向传播算法BPTS的实现:
[mw_shl_code=python,true]    def backward(self, parent_delta):
        '''
        BPTS反向传播算法
        '''
        self.calc_delta(parent_delta, self.root)
        self.W_grad, self.b_grad = self.calc_gradient(self.root)
    def calc_delta(self, parent_delta, parent):
        '''
        计算每个节点的delta
        '''
        parent.delta = parent_delta
        if parent.children:
            # 根据式2计算每个子节点的delta
            children_delta = np.dot(self.W.T, parent_delta) * (
                self.activator.backward(parent.children_data)
            )
            # slices = [(子节点编号,子节点delta起始位置,子节点delta结束位置)]
            slices = [(i, i * self.node_width,
                        (i + 1) * self.node_width)
                        for i in range(self.child_count)]
            # 针对每个子节点,递归调用calc_delta函数
            for s in slices:
                self.calc_delta(children_delta[s[1]:s[2]],
                                parent.children[s[0]])
    def calc_gradient(self, parent):
        '''
        计算每个节点权重的梯度,并将它们求和,得到最终的梯度
        '''
        W_grad = np.zeros((self.node_width,
                            self.node_width * self.child_count))
        b_grad = np.zeros((self.node_width, 1))
        if not parent.children:
            return W_grad, b_grad
        parent.W_grad = np.dot(parent.delta, parent.children_data.T)
        parent.b_grad = parent.delta
        W_grad += parent.W_grad
        b_grad += parent.b_grad
        for child in parent.children:
            W, b = self.calc_gradient(child)
            W_grad += W
            b_grad += b
        return W_grad, b_grad[/mw_shl_code]
在上述算法中,calc_delta函数和calc_gradient函数分别计算各个节点的误差项以及最终的梯度。它们都采用递归算法,先序遍历整个树,并逐一完成每个节点的计算。
下面是梯度下降算法的实现(没有weight decay),这个非常简单:
[mw_shl_code=python,true]    def update(self):
        '''
        使用SGD算法更新权重
        '''
        self.W -= self.learning_rate * self.W_grad
        self.b -= self.learning_rate * self.b_grad[/mw_shl_code]
以上就是递归神经网络的实现,总共100行左右,和上一篇文章的LSTM相比简单多了。
最后,我们用梯度检查来验证程序的正确性:
[mw_shl_code=python,true]def gradient_check():
    '''
    梯度检查
    '''
    # 设计一个误差函数,取所有节点输出项之和
    error_function = lambda o: o.sum()
    rnn = RecursiveLayer(2, 2, IdentityActivator(), 1e-3)
    # 计算forward值
    x, d = data_set()
    rnn.forward(x[0], x[1])
    rnn.forward(rnn.root, x[2])
    # 求取sensitivity map
    sensitivity_array = np.ones((rnn.node_width, 1),
                                dtype=np.float64)
    # 计算梯度
    rnn.backward(sensitivity_array)
    # 检查梯度
    epsilon = 10e-4
    for i in range(rnn.W.shape[0]):
        for j in range(rnn.W.shape[1]):
            rnn.W[i,j] += epsilon
            rnn.reset_state()
            rnn.forward(x[0], x[1])
            rnn.forward(rnn.root, x[2])
            err1 = error_function(rnn.root.data)
            rnn.W[i,j] -= 2*epsilon
            rnn.reset_state()
            rnn.forward(x[0], x[1])
            rnn.forward(rnn.root, x[2])
            err2 = error_function(rnn.root.data)
            expect_grad = (err1 - err2) / (2 * epsilon)
            rnn.W[i,j] += epsilon
            print 'weights(%d,%d): expected - actural %.4e - %.4e' % (
                i, j, expect_grad, rnn.W_grad[i,j])
    return rnn[/mw_shl_code]
下面是梯度检查的结果,完全正确,OH YEAH!
11.png

递归神经网络的应用
自然语言和自然场景解析
在自然语言处理任务中,如果我们能够实现一个解析器,将自然语言解析为语法树,那么毫无疑问,这将大大提升我们对自然语言的处理能力。解析器如下所示:
12.png
可以看出,递归神经网络能够完成句子的语法分析,并产生一个语法解析树。

除了自然语言之外,自然场景也具有可组合的性质。因此,我们可以用类似的模型完成自然场景的解析,如下图所示:
13.png
两种不同的场景,可以用相同的递归神经网络模型来实现。我们以第一个场景,自然语言解析为例。

我们希望将一句话逐字输入到神经网络中,然后,神经网络返回一个解析好的树。为了做到这一点,我们需要给神经网络再加上一层,负责打分。分数越高,说明两个子节点结合更加紧密,分数越低,说明两个子节点结合更松散。如下图所示:
14.png
一旦这个打分函数训练好了(也就是矩阵U的各项值变为合适的值),我们就可以利用贪心算法来实现句子的解析。第一步,我们先将词按照顺序两两输入神经网络,得到第一组打分:
15.png
我们发现,现在分数最高的是第一组,The cat,说明它们的结合是最紧密的。这样,我们可以先将它们组合为一个节点。然后,再次两两计算相邻子节点的打分:
16.png
现在,分数最高的是最后一组,the mat。于是,我们将它们组合为一个节点,再两两计算相邻节点的打分:
17.png
这时,我们发现最高的分数是on the mat,把它们组合为一个节点,继续两两计算相邻节点的打分......最终,我们就能够得到整个解析树:
18.png
现在,我们困惑这样牛逼的打分函数score是怎样训练出来的呢?我们需要定义一个目标函数。这里,我们使用Max-Margin目标函数。它的定义如下:

m16.png


m17.png

具体细节,读者可以查阅『参考资料3』的论文。

小结
m18.png



本帖被以下淘专辑推荐:

已有(1)人评论

跳转到指定楼层
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条